Existence of Solutions for Integrodifferential Equations of Fractional Order with Antiperiodic Boundary Conditions
نویسندگان
چکیده
Recently, the subject of fractional differential equations has emerged as an important area of investigation. Fractional differential equations arise in many engineering and scientific disciplines as the fractional derivatives describe numerous events and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, and so forth. For some recent development on the subject, see 1–15 and the references therein. Integrodifferential equations arise inmany engineering and scientific disciplines, often as approximation to partial differential equations, which represent much of the continuum phenomena. Many forms of these equations are possible. For details, see 16–20 and the references therein. Antiperiodic boundary value problems have recently received considerable attention as antiperiodic boundary conditions appear in numerous situations, for instance, see 21–25 . In this paper, we prove some existence and uniqueness results for the following antiperiodic fractional boundary value problem:
منابع مشابه
Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems
In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.
متن کاملIterative scheme to a coupled system of highly nonlinear fractional order differential equations
In this article, we investigate sufficient conditions for existence of maximal and minimal solutions to a coupled system of highly nonlinear differential equations of fractional order with mixed type boundary conditions. To achieve this goal, we apply monotone iterative technique together with the method of upper and lower solutions. Also an error estimation is given to check the accuracy of th...
متن کاملInterval fractional integrodifferential equations without singular kernel by fixed point in partially ordered sets
This work is devoted to the study of global solution for initial value problem of interval fractional integrodifferential equations involving Caputo-Fabrizio fractional derivative without singular kernel admitting only the existence of a lower solution or an upper solution. Our method is based on fixed point in partially ordered sets. In this study, we guaranty the existence of special kind of ...
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملAn existence result for n^{th}-order nonlinear fractional differential equations
In this paper, we investigate the existence of solutions of some three-point boundary value problems for n-th order nonlinear fractional differential equations with higher boundary conditions by using a fixed point theorem on cones.
متن کامل